

International conference 6–9 JUNE 2023 Espace Prouvé, Nancy, France

Acute vibrotactile threshold shifts in relation to force and hand-arm vibration

Shuxiang Gao Supervisor: Ying Ye ISVR, University of Southampton 06 June 2023

Content

- -search question Experiment design 223 MANCY FRAMCE Pesults
- Summary

Background

— Influencing factors

5349-1 Annex D (informative):

More factors likely to influence the effects of exposure to HAV in working conditions

- Direction of the HAV
- Age, constitution and health
- Coupling force
- Hand, arm and body posture
- Exposure location
- Noise

.

ANCE

— Acute neural and vascular effects

Figure REF: <u>Stock Photos & Images, Vectors, Video & Audio - Dreamstime;</u> St Augustine Orthopaedic Surgery | Jacksonville Sports Med (oastaug.com)

Experiment question and design

20 vibration and force situations :

		No vibration	V1 = 5.5 ms ⁻² r.m.s. HAV	V2 = 11.0 ms ⁻² r.m.s. HAV	V2 = 22.0 ms ⁻² r.m.s. HAV	V2 = 44.0 ms ⁻² r.m.s. HAV
2	F1 = 10 N	9F1	F1+V1	F1+V2	F1+V3	F1+V4
	F2 = 20 N	F2	F2+V1	F2+V2	F2+V3	F2+V4
	F3 = 40 N	F3	F3+V1	F3+V2	F3+V3	F3+V4
	F4 = 80 N	F4	F4+V1	F4+V2	F4+V3	F4+V4

Experiment design

—Apparatus and approaches taken

Position of the subjects when exposed to motion.

VPT test at 125 Hz *Vibration stimuli*

JA

ION 6-9 JUNE 2023

FRANCE

Experiment design

JA

Acceleration at hand wrist ٠

JX

Acceleration at hand wrist ٠

Results ——Fitting model

TTS of VPT: A function of vibration level and force level •

Polynomial with two terms (V, F) up to power 2

 $TTSv = 4.284^{-5*}V^2 + 6.000^{-4*}V^*F - 2.974^{-4*}F^2 + 0.028^*V + 0.027^*F - 0.253$

Results ——Fitting model

1

TTS of VPT: A function of vibration level and force level •

Polynomial with two terms (V, F) up to power 2

 $TTSv = 4.284^{-5*}V^2 + 6.000^{-4*}V^*F - 2.974^{-4*}F^2 + 0.028^*V + 0.027^*F - 0.253$

Summary

• The sensorineural effects:

VAV 619

- Greater HAV \rightarrow more VPT shifts.
- Greater force \rightarrow more VPT shifts
- VPT shifts: A function of vibration level and force level
- Correlated with transmitted acceleration

RANCI

Thank you for your attention!

FRANCE

